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Abstract
We consider the problem of preparing specific encoded resource states for
the toric code by local, time-independent interactions with a memoryless
environment. We propose the construction of such a dissipative encoder which
converts product states to topologically ordered ones while preserving logical
information. The corresponding Liouvillian is made up of four local Lindblad
operators. For a qubit lattice of size L × L , we show that this process prepares
encoded states in time O(L), which is optimal. This scaling compares favorably
with known local unitary encoders for the toric code which take time of order
�(L2) and require active time-dependent control.

1. Introduction and main result

Dissipation, while generally seen as detrimental for quantum computers, can nevertheless be
a useful resource if suitably engineered. Appropriately chosen system–bath couplings can
result in non-equilibrium dynamics where initial states converge toward some dynamical steady
state. This kind of ‘quantum reservoir engineering’ has been proposed as a viable approach to
the experimental preparation of interesting many-body states [11, 18]. Remarkable examples
include the preparation of pure states with long-range order in Bose–Einstein condensates [6],
photonic arrays [17], as well as topologically ordered states [2, 18]. More generally, Verstraete
et al [18] argued that, at least in principle, an arbitrary quantum computation can be realized by
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dissipation. The corresponding process is similar to Feynman’s clock construction and has the
final state of the computation as its steady state. Subsequent work [8] following this program
proposed dissipative gadgets allowing the realization of different dissipative dynamics during
subsequent time intervals.

Here we examine the dissipative preparation of specific topologically ordered states. While
not realizing a fully dissipative computation, this basic primitive could act as a building block
in a hybrid scheme where initial states for quantum computation are prepared by thermalization
and subsequent computations are performed in the usual framework of topological quantum
computation. We ask whether dissipative processes can be used to realize an encoder, i.e.
a map which turns states on individual physical qubits into encoded (many-qubit) states. In
contrast, previous work only considered the dissipative preparation of some ground state without
guarantees on the logical information.

It is worth mentioning that various unitary encoders are known for topologically ordered
systems. For the toric code [9] on an L × L lattice, Dennis et al [5] gave a unitary circuit with
two-local controlled-not (CNOT) gates of depth 2(L2) acting as an encoder. Bravyi et al [3]
showed for any evolution under a local time-dependent Hamiltonian acting as an encoder
requires time at least �(L). In turn, Brown et al [4] present a duality transformation from a
two-dimensional (2D) cluster state to a topologically ordered state, which can be interpreted as
a geometrically local quantum circuit of matching depth. Dropping the requirement of locality,
Aguado and Vidal [1] gave an encoder with depth O(logL) with geometrically non-local two-
qubit gates.

The dissipative encoder considered here may be realized by designing suitable
system–environment interactions. This is to be contrasted with schemes involving error
correction, which generally consist of syndrome extraction by measurement and associated
correction operations. For the toric code, an encoding procedure of this form was given [7].
It involves active error correction operations similar to the minimal matching technique used
in [5].

To define the notion of an encoder in more detail, consider a quantum error-correcting code
Q∼= (C2)⊗k

⊂ (C2)⊗n encoding k logical qubits into n physical qubits. Informally, an encoder
is a map taking any state |9〉 ∈ (C2)⊗k into its encoded version |9〉 ∈Q⊂ (C2)⊗n. (This notion
implicitly assumes a choice of basis of Q.) Since we are interested in a physical system of n
qubits, we will require the encoder to convert a ‘simple’ unencoded initial state into an encoded
logical state. That is, we ask that for a fixed subset A1, . . . , Ak of qubits and a fixed product
state |ϕ〉Ak+1 ⊗ · · ·⊗ |ϕ〉An on the remaining qubits, the encoder maps

|9〉A1···Ak ⊗ |ϕ〉Ak+1 ⊗ · · ·⊗ |ϕ〉An 7→ |9〉 ∈Q for all |9〉 ∈ (C2)⊗k. (1)

We are interested in encoders realized by evolution under a Markovian master equation

d

dt
ρ = L(ρ).

Here the Liouvillian has Lindblad form

L(ρ)=
∑

j

L jρL†
j −

1

2

{
L†

j L j , ρ
}

with Lindblad operators L j acting locally on a constant number of qubits. We ask whether
the completely positive trace-preserving map (CPTPM) etL generated by L is an (approximate)

2
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Figure 1. This figure indicates the relevant qubits in theorem 1, and their appropriate
initialization for encoding: qubits A1, A2 are initialized in the state to be encoded. Each
qubit in B∪B′ is in the state |0〉, while qubits in C ∪ C′ are in the state |+〉. The state of
the remaining qubits D can be an arbitrary (mixed) state. We also illustrate the support
of possible realizations for logical operators (X̄1, Z̄1) and (X̄2, Z̄2) associated with the
first and second logical qubit, respectively. Our encoding procedure requires choosing
realizations for each logical Pauli generator such that they overlap only at the initial
unencoded qubits.

encoder for sufficiently large times t , i.e. whether it can realize the map (1). Our result is the
following.

Theorem 1. Let Q⊂ (C2)⊗2L2
be the toric code consisting of 2L2 qubits on the edges

of a periodic L × L lattice. Consider the partition of the qubits into disjoint sets
A∪B∪B′ ∪ C ∪ C ′ ∪D shown in figure 1. That is

• A= {A1, A2} are two neighboring qubits having a common adjacent vertex v∗ and
plaquette p∗;

• B = {B1, . . . , BL−1} and C = {C1, . . . , CL−1} are located along a vertical, respectively
horizontal, line passing through A1;

• B′ = {B ′1, . . . , B ′L−1} and C ′ = {C ′1, . . . , C ′L−1} are located along a horizontal, respectively
vertical, line passing through A2 and

• D are the remaining 2(L − 1)2 qubits.

There is a geometrically local Liouvillian L (with four-qubit Lindblad operators) such that the
following holds: for any state ρD on D ∼= (C2)⊗2(L−1)2

and |9〉 ∈ (C2)⊗2, and for any ε > 0, we
have ∥∥∥etL

(
|9〉〈9|A⊗ |+〉〈+|

⊗2(L−1)

BB′ ⊗ |0〉〈0|⊗2(L−1)

CC′ ⊗ ρD

)
− |9〉〈9|

∥∥∥
1
6 ε

whenever

t > (4 ln(2))L + 2 ln(16ε−2). (2)

In this expression, we use the trace norm ‖A‖1 = tr
√

A† A for Hermitian operators.

3
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We will give a detailed description of the relevant Liouvillian in section 2. The evolution etL

implements a continuous-time version of a local error correction process somewhat analogous
to Toom’s rule: excitations move toward a single plaquette/vertex where they annihilate. An
analogous ground-state preparation scheme for more general frustration-free Hamiltonians was
discussed in [18]. However, guarantees about encoded information appear to be harder to obtain
in their generic scheme. Furthermore because their construction requires the injectivity [14]
property of the associated projected entangled pair state (PEPS) description (and hence blocking
of sites), the resulting locality of the Lindblad operators will be slightly worse. In contrast,
our scheme directly exploits the stabilizer structure of the underlying code, resulting in a
comparatively simple Liouvillian. Indeed, our construction is optimal in terms of locality, i.e.
the number of particles involved in each Lindblad term [12]. Related locality constraints for
pure steady states were derived4 in [15, 16]. In our setup, the initial product state determines in
a transparent way which code state is prepared. Our work goes beyond the mere characterization
of steady states by adding two key ingredients: the consideration of logical observables (which
are preserved) and an analysis of the convergence toward the ground space of the toric code.

The bound O(L) on the convergence time established by theorem 1 improves on the O(L2)

upper bound predicted for the analogous construction in [18], without a guarantee on the logical
information. In fact, it is tight: there are initial states ρ which thermalize slowly, i.e. etL(ρ) is
far away from the code space Q for any time t � L . In a separate work [10], we provide a
general no-go theorem in this direction: dissipative state preparation of topologically ordered
states requires at least a linear amount of time in L if the Liouvillian is local. Combined with
theorem 1, this implies that the construction presented here is optimal in terms of preparation
time among the entire class of local Liouvillians.

In summary, our work shows that dissipative processes can be used to implement an
encoder for the toric code. Intriguingly, this encoder is more time-efficient than the best known
unitary circuit. We stress, however, that both types of encoders need to be supplemented with
additional mechanisms in the presence of noise, especially if the encoded information is further
processed. As discussed in [13], local Liouvillians such as the one considered here are not
suitable for the preservation of encoded information.

2. Description of the Liouvillian

2.1. A Liouvillian for a general stabilizer code

We first describe a generic Liouvillian associated with a stabilizer code Q with stabilizer
generators {S j} j∈S . We will subsequently specialize this to the toric code. Let P±j =

1
2(I ± S j)

be the projections onto the ±1 eigenspaces of the stabilizer S j . The code space Q is the ground
space of the Hamiltonian

H =
1

2

|S| · I −∑
j

S j

=∑
j

P−j

(the global energy shift is introduced for convenience). Our goal is to implement a local error-
correction strategy by dissipative evolution. Concretely, we associate a unitary Pauli correction

4 In terms of [16, definition 2], our construction is capable of preparing any state in ground space of the toric code
as a conditionally asymptotically stable state of a Lindblad dynamics.
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operator C j with each stabilizer generator S j such that C j and S j anticommute, i.e. {C j , S j} = 0.
We define the CPTPMs

T j(ρ)= P+
jρP+

j + C j P−j ρP−j C†
j .

Note that by definition, T j lowers the energy of the term P−j in the Hamiltonian, i.e.

tr(T j(ρ)P−j )6 tr(ρP−j ) for any state ρ. (3)

While after application of T j , the stabilizer constraint defined by S j is satisfied, its application
may create a non-trivial syndrome (excitation) for a neighboring stabilizer Sk , k 6= j . By design
(i.e. the choice of correction operators for the toric code discussed below), repeated application
of all {T j} j∈S eventually removes all excitations, resulting in a state supported on the code space
Q. It will be convenient to introduce the averaged CPTPM

Tav(ρ)=
1

|S|

∑
j

T j (4)

which randomly chooses a syndrome and applies the associated correction map.
By the correspondence discussed in [20], each local CPTPM T j defines a local Liouvillian

L j = T j − id. We are interested in the evolution under L=
∑

j L j , which, by definition, is a
sum of constant-strength local terms. Observe that L= |S|(Tav− id).

2.2. Construction for the toric code

We now consider the toric code with qubits on the edges of an L × L (periodic) square lattice.
We separate the Hamiltonian into

H = H (p) + H (v) where H (p)
=

1

2

L2 I −
∑

p∈S(p)

Sp

 and H (v)
=

1

2

(
L2 I −

∑
v∈S(v)

Sv

)
,

where the former includes all plaquette and the latter includes all vertex terms. Here, we have
taken Sp and Sv to correspond to plaquette and vertex stabilizers, respectively,

Sp = Z⊗4
= Sv = X⊗4

= .

In other words, Sp is the product of Z-type Pauli operators acting on the edges bounding
plaquette p ∈ S(p) and Sv is the product of Pauli operators acting on the qubits incident to
vertex v ∈ S(v). To define the associated Pauli correction operators {Cv}v∈S(v) and {C p}p∈S(p) , let
us partition the set of vertices and plaquettes into

S(p)
= {p∗} ∪S(p)

→
∪S(p)

↑
and S(v)

= {v∗} ∪S(v)
←
∪S(v)

↓
.

Here p∗ is a single plaquette, S(p)
→

consists of the L − 1 plaquettes lying on a fundamental cycle
of the torus (which we refer to as the ‘equator’, running ‘horizontally’ or ‘east–west’ along the
torus) on which p∗ is located, whereas S(p)

↑
are the remaining L2

− L plaquettes. The vertex v∗

as well as the sets S(v)
←

and S(v)

↓
are defined similarly on the dual lattice, see figure 2.

The subscript associated with these sets indicates the direction of movement of an
excitation under application of the local correction map. For example, a magnetic excitation

5
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(a) Correction operations for plaquettes (b) Correction operations for vertices

Figure 2. This figure defines the LiouvillianL (see text). In particular, (a) defines the sets
S(p)
→

and S(p)

↑
. The associated correction operation C p consists of a single-qubit Pauli-X .

It moves magnetic (plaquette-type) excitations to the neighboring plaquette according
to the indicated arrow. Similarly, (b) defines the sets S(v)

←
and S(v)

↓
. Electric (vertex-

type) excitations are moved from one vertex to the next according to these arrows. The
associated correction operator Cv is a single-qubit Pauli-Z . The qubits A1 A2 carrying
the logical information are indicated in red. They are both part of the special plaquette
p∗, and incident to the vertex v∗. No correction operation acts on the qubits A1 A2.

(caused by an X -error) on a plaquette p ∈ S(p)

↑
will move to the neighboring plaquette to the

north of p under application of the correction map C p. That is, we define

C p = for p ∈ S(p)

↑
, C p = for p ∈ S(p)

→

Cv = for v ∈ S(v)

↓
, Cv = for v ∈ S(v)

←
.

We will set

Cv∗ = C p∗ = I,

corresponding to a trivial correction operation (this is simply done for convenience). The
Liouvillian L is then defined as in section 2.1.

3. Proof of theorem 1

The proof of theorem 1 relies on two basic statements. The first one concerns the logical
information encoded in the state: for suitable initial states, this information is preserved during
the evolution. Recall that the toric code has two encoded qubits. Let

X̄1 =

(⊗
b∈B

Xb

)
⊗ X A1, Z̄1 =

(⊗
c∈C

Zc

)
⊗ Z A1, Ȳ1 = iX̄1 Z̄1

X̄2 =

(⊗
b∈B′

Xb

)
⊗ X A2, Z̄2 =

(⊗
c∈C′

Zc

)
⊗ X A2, Ȳ2 = iX̄2 Z̄2

be the two-qubit logical Pauli operators defined by figure 1, and let us set

P̄2 =
{

P̄1 P̄2 | P̄1 ∈ {I, X̄1, Ȳ1, Z̄1}, P̄2 ∈ {I, X̄2, Ȳ2, Z̄2}
}
,

where I is the identity operator. These operators play a crucial role in the following statement.

6
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Lemma 1 (Preservation of logical information). For any two-qubit Pauli operator P =
P1⊗ P2, Pj ∈ {I, X j , Y j , Z j}, let P = P1 P2, P j ∈ P̄2 be its corresponding logical counterpart.
Consider an initial state of the form

ρ0 = |9〉〈9|A⊗ |+〉〈+|
⊗2(L−1)

BB′ ⊗ |0〉〈0|⊗2(L−1)

CC′ ⊗ ρD, (5)

where the state ρD is arbitrary on (C2)⊗2(L−1)2
. Then

tr(PetL(ρ0))= 〈9|P|9〉 for all t and all P ∈ P2. (6)

Proof. Let P = P1⊗ P2 be arbitrary. Observe first that the rhs of (6) is equal to

〈9|P|9〉 = tr(Pρ0) (7)

because of the definition of P (cf figure 2) and the form of ρ0, i.e. the fact that the qubits in BB′
and CC ′ are +1-eigenstates of the single-qubit X and Z operators, respectively. In other words,
it suffices to show the expectation value tr(PetL(ρ0)) is time independent for initial states ρ0 of
the form (5). We claim that an even stronger statement holds: we have

(etL)†(P)= P for any P ∈ P2, (8)

i.e. any observables of the form P do not evolve in the Heisenberg picture.
To prove (8), observe that the one-parameter family of unital maps {(etL)†

}t>0 is generated
by the adjoint L† of the Liouvillian, hence (8) is equivalent to

L†(P)= 0.

Since L=
∑

j L j is a sum of Liouvillians L j = T j − id associated with stabilizers j , it suffices

to verify that for every j , we have T †
j (P)= P or

P+
j PP+

j + P−j C†
j PC j P

−

j = P. (9)

Because P is a logical operator, it commutes with each stabilizer, and hence also the projections
P±j . Equality (9) is in fact implied by [C†

j , P]= 0, which we can verify by a case-by-case
analysis for single-qubit (logical) operators P ∈ {X̄1, Z̄1, X̄2, Z̄2} (the general case then follows
since a product P1 P2 commutes with C†

j if each factor P j does). Consider for example the case
where P = Z̄1. We then have to consider two cases:

(i) The correction j = p is associated with a plaquette. In this case C p is a Pauli-X (or
the identity). However, inspection of the support of Z̄1 (see figure 1) and the location
of the correction operators (see figure 2(a)) reveals that no correction operation C p acts
on the support of Z̄1, hence [C†

p, Z̄1]= 0 as desired.
(ii) The correction j = v is associated with a vertex. In this case Cv is a Pauli-Z (or the identity),

hence [C†
v , Z̄1]= 0 holds trivially. ut

The second fundamental statement is about convergence to the ground space.

Lemma 2 (Convergence time). Let Q be the projection onto the code space of the toric code,
and let Q⊥ = I −Q be the projection onto the orthogonal complement. Let ρ be an arbitrary
initial state. Then we have

tr(Q⊥etL(ρ))6 ε for all t > (4 ln(2))L + 2 ln(1/ε). (10)

7
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We have not optimized the constants in this bound as we are interested in the overall (linear)
scaling in L . The proof strategy is different from the arguments in [18] and may be of
independent interest.

Proof. Consider the function f : S\{v∗, p∗} → N∪ {0} defined as follows:

for a plaquette p: f (p) + 1= length of a path moving north-east from p to p∗

for a vertex v: f (v) + 1= length of a path moving south-west from v to v∗.

In other words, the function expresses the axial distance to v∗ and p∗, respectively. For a vertex
v (plaquette p), the quantity f (v) ( f (p)) is the number of vertices (plaquettes) traversed by
an electric (magnetic) excitation on the primary (dual) lattice before reaching v∗ (p∗) along a
path (v = v1, v2, . . . , v f (v), v∗) (or (p = p1, p2, . . . , p f (p), p∗)). For the special vertex v∗ and
the plaquette p∗, we set f (v∗)= f (p∗)=−1 for convenience (alternatively, we could omit
the discussion of the corresponding trivial correction operations altogether as the stabilizer
generators are linearly dependent).

The key property of the function f is the fact that it is compatible with the way excitations
are propagated under the correction operations. More precisely, for each stabilizer S j , let
Pred( j) be the set of correction operations that anticommute with it, i.e.

Pred( j) := {k ∈ S | k 6= j and {Ck, S j}+ = 0}.

Then f has the property that

k ∈ Pred( j) implies f (k)> f ( j) + 1. (11)

Namely, whenever an excitation is created by Ck at S j , one can be certain that a higher valued
excitation has been removed at Sk . We will argue that for any α > 1, we have

tr(Q⊥etL(ρ))6 e−(1−α−1m)t
∑
j∈S

α f ( j), (12)

where m :=maxk∈S |{ j |k ∈ Pred( j)}| is the maximal number of stabilizers a single correction
operator can excite. In the case of the toric code, m = 1, hence we obtain tr(Q⊥etL(ρ))6
e−t/222L (implying the claim) by choosing α = 2 and observing that∑

j∈S

α f ( j)
= 2α−1

L−1∑
r,s=0

αr+s
= 2α−1

(
αL
− 1

α− 1

)2

<
2α2L−1

(α− 1)2

∣∣∣
α=2
= 22L .

To prove (12), consider the observable

D =
∑

j∈S\{v∗,p∗}

α f ( j)P−j .

Clearly D > Q⊥ for any α > 1, hence it suffices to show that the expectation value tr
(
DetL(ρ)

)
is upper bounded by the rhs of (12), i.e.

tr(DetL(ρ))6 e−(1−α−1m)t
∑
j∈S

α f ( j). (13)

Consider the Heisenberg evolution of the projection operators {P j} j . Since Pauli operators either
commute or anticommute, a straightforward calculation gives

L†
k(P
−

j )=

{
0 if [Ck, S j ]= 0,

(I −P−j )P
−

k −P−j P−k if {Ck, S j} = 0.

8
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In particular, the expectation values behave classically under the designed Liouvillian, i.e.
(writing 〈X〉t = tr(XetL(ρ)) for brevity)

d〈P−j 〉t
dt
= −〈P−j 〉t +

∑
k∈Pred( j)

〈(I −P−j )P
−

k 〉t −〈P
−

k P−j 〉t

6 −〈P−j 〉t +
∑

k∈Pred( j)

〈P−k 〉t . (14)

According to (14), we have

d〈D〉t
dt
6 −〈D〉t +

∑
j

α f ( j)
∑

k∈Pred( j)

〈P−k 〉t

6 −〈D〉t + α−1
∑

k

α f (k)
〈P−k 〉t

∑
j :k∈Pred( j)

1,

where we used property (11) on the function f . According to the definition of m and D, this
implies

d〈D〉t
dt
6−(1−α−1m)〈D〉t ,

i.e. the expectation value decays exponentially. The claim (13) then follows from the fact that
P−j 6 I for all j ∈ S since these are projections, hence tr(Dρ)= 〈D〉0 6

∑
j∈S α f ( j).

ut

With lemmas 1 and 2, we are ready to prove our main result.

Proof of theorem 1. Consider an initial state ρ0 of the form (5) and assume that t > (4 ln(2))L +
2 ln(ε−1). By lemma 2, we have tr(Q⊥etL(ρ0))6 ε. With the gentle measurement lemma (see
e.g. [19, lemma 9.4.1]), this implies

‖etL(ρ0)− ρ̄ ′t‖1 6 2
√

ε, (15)

where ρ̄ ′t is defined as ρ̄ ′t := QetL(ρ0)Q
tr(QetL(ρ0))

. Observe that the state ρ̄ ′t is supported entirely on the code
space Q.

Note that for any two states ρ, σ we have ‖ρ− σ‖1 =max‖P‖61 tr(P(ρ− σ)) and therefore
| tr(P(ρ− σ))|6 ‖ρ− σ‖1 for any normalized operator P . Hence (15) implies that for any
normalized logical operator P , we have

| tr
(
P(etL(ρ0)− ρ̄ ′t)

)
|6 2
√

ε. (16)

Let |9〉 ∈Q be the target encoded state, i.e. the state satisfying (cf (7) and (8))

〈9|P|9〉 = 〈9|P|9〉 = tr(Pρ0)= tr(PetL(ρ0)) for any logical operator P.

Combining this with (16) shows that |9〉〈9| and ρ̄ ′t have approximately the same expectation
values for logical operators. Since both states are supported on the ground space Q for which

9
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we have access to a full algebra of logical observables (linear combinations of logical Pauli
observables), one may choose5 a normalized logical operator P such that PQ= sgn(|9〉〈9| −

ρ̄ ′t) which achieves the maximization defining one-norm distance

‖|9〉〈9| − ρ̄ ′t‖1 = tr[sgn(|9〉〈9| − ρ̄ ′t)(|9〉〈9| − ρ̄ ′t)]= | tr(P(|9〉〈9| − ρ̄ ′t))|6 2
√

ε. (17)

Combining (17) with (15) and using the triangle inequality, we conclude that

‖etL(ρ0)− |9〉〈9|‖1 6 4
√

ε if t > (4 ln(2))L + 2 ln(ε−1).

The claim of theorem 1 follows immediately from this statement. ut

4. Conclusions and outlook

We have presented a quasi-local time-independent Liouvillian which generates a dissipative
encoder: it encodes two physical qubits into the ground space of the toric code. Its key
features are translation-invariance (up to boundary conditions), optimal locality of the Lindblad
operators, as well as optimal, i.e. linear convergence (encoding) time of the resulting dissipative
encoder as a function of the lattice size. This illustrates the power of engineered dissipation for
state preparation in a non-trivial setting with degeneracy.

Since the Liouvillian is constituted of quasi-local CPTPMs associated with each stabilizer,
one may interpret6 the resulting evolution etL as the repeated application of the ‘average’
correction map (cf (4)). This viewpoint immediately results in a preparation algorithm for
surface code states. The latter inherits the properties of the dissipative evolution: it is translation-
invariant up to boundary conditions, composed of feedback-free quasi-local maps and requires
only a minimal number of iterations to converge. These features make it an attractive candidate
for potential experimental realizations.

4.1. Towards fault tolerance

The most pressing open question is to incorporate noise in the form of control and initialization
imperfections into the design and analysis of such an encoder. The holy grail is to engineer
a reasonable, possibly time-dependent Liouvillian master equation such that after a specified
initial period physical qubits are encoded with only a constant, lattice-size independent
probability of suffering uncorrectable errors. Expecting further reduction seems impossible
without changing the assumptions due to the possibility of an error occuring on the unencoded
qubits. As it stands, our protocol L-fold amplifies such an initial error probability as certain
errors on the qubits B∪ C ∪B′ ∪ C ′ are propagated into logical errors. Indeed, we suspect that
a fully fault-tolerant encoding scheme would require progressively growing the code’s physical
support while simultaneously introducing disssipative terms responsible for self-correction
within this support. As in [13] such terms would be responsible for ensuring that the rate of
occurence for uncorrectable errors decreases with the code size.
5 If P is the normalized local observable which optimally distinguishes between the unencoded states U †

|9〉〈9|U
and U †ρ̄ ′tU , then P̄ =U † PU is the required logical operator.
6 To do so, simply expand the exponential.
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